Materials and Installation
Design Considerations:
- The design of grassed filter strips should be incorporated into overall landscape design and be considered as a component of the sites stormwater management program.
- Because of the uncertainty of effectiveness of filter strips, native or natural vegetation that probably already facilitates stormwater treatment should not be replaced. Enhancement of native or natural vegetation to improve their functioning in stormwater management is preferred.

From: http://www.metrocouncil.org/environment/Water/BMP/manual.htm
- Design should be site specific, and take into consideration:
- the need for a minimum treatment length of 25 feet.
Greater lengths (in the direction of flow) provide
better treatment.
Steeper slopes require longer treatment areas. Studies
have shown that there is limited pollutant removal
from 25 feet long strips but moderate to high removal
of pollutants from strips 150 feet long.
- That the width of a filter strip should run the width
of the impervious area to be treated. If adjoining
a natural body of water the strip should run the width
of property.
- That effective treatment by strips requires sheet
flow. Surface draining to a strip can be no more than
75 feet in length for impervious surfaces or 150 feet
in length for pervious surfaces. Storm water flow over
a surface
greater than these distances changes from a uniform
thickness of sheet flow to rivulets of unequal thickness
and greater velocity. Therefore strips collecting stormwater
from distances greater than indicated above will be
ineffective.
- That the recommended slope is between two and six percent.
- That water table and bedrock horizons should be two to four feet below filter strip surface
- That optimal stormwater treatment for one acre of 100% impervious area requires a 580 wide feet by 75 feet long (top to toe) grassed filter strip.
- Maintaining sheet flow is critical to success:
- The top and bottom (toe) of a filter strip should be as flat as possible to help maintain sheet flow.
- Collection areas above the filter strip may also require adjustment to maintain sheet flow.
- Incorporation of a pea gravel level or flow spreader will help break up areas of concentrated flow upstream of filter strip and help maintain sheet flow as water enters filter strip.
- Filter strips are not designed to accommodate large storms beyond the two to three year storm.
To prevent washout damage expected with larger storms, a
bypass system to other site stormwater management practices should be included:
- Grassed filter strips are prone to damage by constant vehicular, pedestrian and animal traffic. Design should accomplish moderation of these negative impacts.
- Plant species selected must be chosen (best to consult
with a horticulturist or landscape architect familiar
with vegetation in your region) to:
- withstand flowing water.
- deal with extremes in water supply.
- produce a dense mat-like growth pattern of fine stems that enhance filtration of pollutants.
- be compatible with the sites climate, soil, shade and pest conditions.
- in cold climates be tolerant of salt and sand loading.
Construction:
- Accurate grading is the priority to ensure sheet flow.
- Soil stabilization practices such as use of mulch or mats are required to prevent erosion during the development phase of a filter strip.
- A full growing season should pass to allow establishment of strip before becoming part of the site's stormwater management program.
- The interruption of filter strips by construction entrances and the like will require buffer techniques such as vehicle tracking pads or silt fences.
Costs (1991 dollars - dated information):
- Will vary between $13,000 and $30,000 per acre of filter strip constructed depending on whether seed or sod is used. Additional costs are cost of design, which is minimal, plus costs of installing a pea gravel level spreader and an optional berm or required cold climate adjustments.
- The greatest expense in installing a filter strips is the extensive requirement for land and its cost.
- Maintenance costs average $350 per acre per year. The amount probably overlaps with an existing landscape maintenance program and is therefore a minimal cost.
Maintenance:
- A strong commitment to maintenance is required to ensure continued proper function. Maintenance programs should include:
- Regular mowing of grass to a height of three to four inches.
- Annual inspections and necessary repairs to include:
- Removal of built up sediments in leveler or flow spreader.
- Removal of any rills and gullies formed in the vegetation mat.
- Replant any bare soil patches.
- Replant with a different turf species if the original species has not established.
- As needed remove any sediment build-up apparent on vegetated area.
|
Suggested References: Guidebooks, websites and pamphlets
[ =
pdf file; it will be opened in a new window]
- Post-Construction
Storm Water Management in New Development & Redevelopment - Grassed
Filter Strip (2002) by USEPA.
A good overall review of vegetative filter
strip use. Strong reference section for pursuit by the more curious.
- Georgia
Stormwater Management Manual –Volume 2/3.3.1 Filter Strips
(2001).
A good overview
from a technical viewpoint of design. Presents examples of design schematics
and required design calculations. [ 260
KB]
- New
Jersey Stormwater Best Management Practices Manual - Chapter 9.10 -
Standard for Vegetative Filters (2004). A very good technical overview of
subject matter. Schematics of filter strips and a series of figures (graphs)
used to determine Filter Strip length based on the variables of slope, soil
type and vegetation type/required total suspended solids removal. [
250
KB]
- The Urban
Small Sites Best Management Practices (BMP) Manual (2003) by the
Metropolitan Council of Minnesota's Twin Cities offers detailed information
on 40 BMPs for stormwater pollution management with comments on their application
in a cold-climate setting. [
360
KB]
- Stormwater
Practices for Cold Climates by Deb Caraco and Richard Claytor
of the Center for Watershed Protection for the USEPA-Region 5 in 1997; focuses
on adjustments needed to make traditional stormwater management practices
work in cold climates; find information on Filter Strips in the chapter
on Infiltration. [
69
KB]
- Understanding environmentally friendly development and design of parking
lots associated with such development is a prerequisite to choosing appropriate
stormwater management practices, find this background information at
awarecolorado.org [ 1.1
MB]
and nemo.uconn.edu [ 41
KB].
- State
of Minnesota Stormwater Manual (2005) is a valuable tool for stormwater
managers. The manual provides details on stormwater filtration
practices [
890
KB] applicable to Minnesota that conserves, enhances, and restores
high-quality water in our lakes, rivers, streams, wetlands, and ground water.
- American Rivers 2004. Catching
the Rain: A Great Lakes
Resource Guide for Natural Stormwater Management. [
1.5
MB]
|
Tips and Wisdom
- While filter strips appear to be a simple stormwater management solution, their success depends heavily on design and precise grading. Engineering design and good oversight of grading is best left to those with stormwater management practices expertise and experience.
- Commitment to maintenance and repair is vital. At individual sites, several different selected grasses or combinations of grasses may have to tried before the strip functions as expected.
- Filter strips can have shrubs and trees dispersed throughout, this practice helps create a visual barrier to a parking lot as well as adding visual appeal and shade.
- Pedestrian traffic across a filter strip is undesirable, landscape design should take this problem into account and channel such traffic onto sidewalks away from filter strips.
- Filter strips are most effective when coupled with other stormwater BMPs, this is especially true in cold climates or in areas with soils of poor porosity.
- In cold climates adjustments that improve the effectiveness of filter strips include:
- Commitment to a well executed maintenance program with particular attention to spring time inspections and required repair.
- Reduce the amounts of chloride deicer (detrimental too much of selected vegetation) or sand (clogs the filter strip). Chlorides may also contaminate groundwater and wells.
- Increase rate of percolation through soil to help compensate for clogging when sand is used and also helps balance the loss of infiltration during winter months.
- Provide a sufficient set back from pavement to prevent frost heave caused by infiltrated water migrating under pavement surface. Set back restrictions can be overcome by engineering solutions to protect pavement e.g. insulated pavement.
- Coupling filter strip with other BMPs and utilizing these other practices to deal with the bypassed snow melt. Essentially the filter strip would become seasonally operational.
|
Limitations
- Filter strips are not appropriate in conditions where:
- sheet flow is difficult to maintain e.g. hilly and large paved areas.
- land is scarce and expensive.
- retrofits can not provide sufficient space.
- high levels of contamination are likely to occur e.g. gas stations.
- commitment to long term maintenance, repair and regrading can not be established.
- soils are mostly composed of clay or clay/silt or where the soils do not support dense grass cover. Grass
species chosen must withstand high velocity flows and irregular climate conditions.
- there is permafrost.
- Filter strips are functional only if sheet flow can be maintained and inaccurate
grading is a primary cause of loss of sheet flow.
- Effectiveness of filter strips as a remover of pollutants is debatable and
do not provide significant storage through infiltration:
- A desired target removal of 80% total suspended solids (TSS) is not achievable by use of filter strips alone.
- Filter strips do not significantly reduce peak discharge or volume of runoff.
- Use of filter strips in cold weather localities requires adjustments to
design (for more information see Tips and Wisdom section above) or go directly
to Stormwater
Practices for Cold Climates-Infiltration
section [
69
KB] or the Filtering
BMPs section [ 82
KB].
Necessary adjustments and additions add additional expense. In cold
weather climates, filter strips are best coupled with other stormwater
management practices.
|
For more information contact: |